
Mid-Infrared Spectroscopy for Monitoring
of Anaerobic Digestion Processes –
Prospects and Challenges

To develop an online probe that is not only sufficiently robust, but also able to
measure crucial process variables in biogas plants is a tough challenge. Therefore,
a mid-infrared (MIR) spectroscopic attenuated total reflection (ATR) probe and
robust probe fitting were established. A fully automated probe control, calibration
after probe cleaning, and analysis of the absorption spectra using machine learn-
ing were implemented in order to reduce maintenance of the probe to a mini-
mum. The relevant wavelengths in the MIR spectrum for organic acids, total alka-
linity, and ammonium nitrogen concentration were identified. Finally, intensive
lab testing was carried out, followed by operation of the complete online measure-
ment system at an industrial biogas plant. In order to improve signal strength and
sensitivity, microelectronic mechanical system (MEMS)-based Fabry-Pérot inter-
ferometers were also investigated.
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1 Introduction

The biogas industry has grown significantly for the past
20 years all over Europe, supported by very attractive feed-in
tariffs [1–4]. In particular in Germany, until now nearly 8000
biogas plants [5] have been built and many of them are not
operating at full capacity [6]. One of the main reasons for op-
erational problems in biogas plants are caused by high volatile
fatty acid (VFA) and low total alkalinity (TA) concentrations in
combination with a lack of suitable online measurement sys-
tems for these process variables. As reported in [6], many bio-
gas plants rely on a minimum of online process monitoring,
measuring mainly temperature and energy production. Not
even pH or the amounts of produced biogas are measured at
small and medium-sized digesters. Relatively high prices for
online analyzers for VFA (around 20 000 €) and the high and
complex maintenance of these systems make them unfeasible
for biogas plants. Furthermore, expert knowledge is required to
successfully use and maintain such equipment, which an oper-
ator of a biogas plant does not have. Thus, accurate measure-
ment of key variables of the anaerobic digestion (AD) process
is presently mostly done by laboratory analysis of samples
taken from the digester. This is a time-consuming and costly
process, and requires a skilled operator to perform. Hence, is

generally only done when there are concerns with digester sta-
bility.

If the conditions in a biogas digester become toxic to the
bacteria, this can be catastrophic and may result in high losses
as the digester may require draining and could suffer from
reduced biogas production for several months, until the di-
gester is operating at the previous level. Consequently, it is typi-
cal that biogas plants are operated conservatively with a safety
margin. Therefore, the need for reliable and low-maintenance
online instrumentation for biogas plants and anaerobic diges-
tion processes in general is high and it can be considered one
of the main challenges of the biogas sector. Not only for pro-
cess monitoring but also for improved process control which
will allow better utilization of the capacity of the digester and
will in turn result in a higher level of biogas produced, leading
to increased revenues and higher profits.

Tab. 1 gives an overview of the range of process variables that
have an effect on the performance of the anaerobic digestion
process and are of special interest for online monitoring. Fur-
thermore, the corresponding concentration ranges are given.

Mid-infrared (MIR) spectroscopy is a very promising tech-
nique to characterize organic matter in AD processes. One
major advantage over existing near-infrared (NIR) sensors is
that process variables such as VFA, TA or total anorganic car-
bon (TAC), NH4-N, and total solids show distinctive peaks in
the MIR spectrum between 1800 and 800 cm–1, which makes it
easier to correlate peak intensity to actual concentrations. In
previous work [7], Fourier transform infrared spectroscopy
(FTIR) and fluorescence spectroscopy were used to character-
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ize the organic matter evolution during the AD and compost-
ing of pig slurry. Steyer et al. [8] also applied an MIR spectrom-
eter for several years for the online measurement of chemical
oxygen demand (COD), total organic carbon (TOC), VFA,
total and partial alkalinity of an AD fixed bed treating industri-
al wine distillery wastewater. Spanjers et al. [9] employed the
same technique at a full-scale plant for the online monitoring
of VFA, COD, alkalinity, sulfate, total nitrogen, ammonia, and
nitrate. However, main problems with MIR spectroscopy were
always the fiber length which resulted in high signal losses,
maintenance of the attenuated total reflectance probe and costs
for the spectrometer. Furthermore, there are papers covering
online monitoring in AD using NIR spectroscopy. VFAs were
measured by partial least squares (PLS) regression with
0.9 g kg–1 root-mean-square error of prediction (RMSEP) [10].
Similarly, Total VFAs were measured with an RMSEP of
1.53 g L–1 [11] using a combination of PCA and PLS regression.
PCA and PLS regression were also used for analysis of data
from a simulation of an at-line process with a new embedded
NIR sensor [12], with an R2 value of 0.94 for total VFAs, with
individual VFAs having lower accuracy.

In order to overcome the problems related to MIR spectros-
copy and to investigate its potential for the use in biogas plants,
the Cologne University of Applied Sciences and art photonics
developed a diamond-tipped attenuated total reflection (ATR)
probe which uses a specifically designed polycrystalline fiber.
In conjunction with a fully automated process interface pro-
vided by the Knick GmbH, a complete online measurement
system was developed and tested in a laboratory environment
as well as at the industrial biogas plant ‘‘Leppe’’ operated by the
AVEA GmbH & Co. in Lindlar. This plant is an industrial bio-

gas plant for digestion of organic waste
from urban households with a capacity
of 1.1 Mkg m2s–3 (MW) and operates
according to the Valorga method [13]
with a high dry matter content of
20–25 %.

This paper is organized as follows.
Sect. 2 describes both experimental set-
ups, in the lab and at the full-scale bio-
gas plant and the used equipment in
detail. Sect. 3 provides background in-
formation on the machine learning
methods used for spectral data analysis.
The results obtained by laboratory
measurements and full-scale testing
will be described subsequently in
Sect. 4. Newly emerging micro-elec-
tronic mechanical system (MEMS)-
based spectrometric sensor systems are
introduced as a valid alternative for
future sensor systems in Sect. 5 which
is followed by a conclusion.

2 Experimental Setups

Two setups were used for testing,
namely, a laboratory setup and a full-

scale setup. Due to the various requirements of the two applica-
tions in terms of available space and robustness against vibra-
tions, two different spectrometers were applied for the meas-
urements, whose measurement parameters were adjusted
according to the situation to ensure that an adequate spectrum
in terms of resolution and signal-to-noise ratio (SNR) could be
recorded. Following further development work, MEMS-based
spectrometer systems could be a possible alternative, since
depending on the sensor construction the sensor can be more
compact and far more robust to vibration which would be
more suitable for industrial environments.

2.1 Laboratory Setup

For the laboratory testing, an FTIR1750 Perkin-Elmer spec-
trometer was used for the samples. The spectrometer was con-
nected to the diamond ATR probe via a 1-m fiber, giving a total
path length of 2 m. The short path length is a major advantage
because it reduces signal loss significantly improving the SNR.
The FTIR1750 has two detectors, i.e., a triglycine sulfate (TGS)
and a mercury cadmium telluride (MCT) detector, and can be
switched internally. Due to the higher sensitivity the MCT
detector was taken for all measurements. Fig. 1 illustrates the
laboratory setup.

The parameters of the spectrometer for the conducted meas-
urements were adapted manually to give the best performance
in terms of signal quality, determined by SNR and resolution,
and measurement duration. The best performance was
achieved by averaging 64 scans for one measurement with a
resolution of 4 cm–1 and an amplification of 8.
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Table 1. Overview of important AD process variables and their concentration ranges ac-
cording to [10].

Parameter Range Fmc [mmol g–1]

from to

[g L–1] [mmol L–1] [g L–1] [mmol L–1]

NH4-N 1.80 77.78 3.66 158.3 55.56

TS [g kg–1] 74 – – – –

oTS [g kg–1] 54 – – – –

TAC (CaCO3) 8 79.9 15 149.9 9.99

VFA (acetic acid) 2.05 34.1 6.5 108.2 16.65

Acids

Acetic 0 0 2.99 49.79 16.65

Propionic 0 0 0.60 8.10 13.50

Butyric 0 0 0.05 0.57 11.35

Isobutyric 0 0 0 0 11.35

Valeric 0 0 0.11 1.08 9.79

Isovaleric 0 0 0 0 9.79

Carboxylic 0 0 0.02 0.17 8.61
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In order to test the sensitivity of the spectrometer system,
dilutions in deionized water were performed for acetic acid,
sodium bicarbonate, and ammonium chloride. The diluted so-
lutions were then measured. The data from these diluted sam-
ples were employed for the machine learning process and cali-
bration. These samples are referred in this text to as dataset U1.

A further sample of the substrate from the biogas plant was
taken and spiked with acetic acid. Spectral data was then com-
pared from the raw substrate, the spiked substrate, and the
original pure acid. This data was employed to verify that peaks
due the absorption of the acetic acid could be measured when
using the spectrometer system. Additionally, comparisons were
done between the absorption spectra for ammonium chloride,
sodium bicarbonate, and raw substrate. These spiked results
constituted dataset U2.

Laboratory measurements were performed on samples from
the biogas plant to analyze the composition, including acetic
acid, bicarbonate content as well as NH4-N concentration. For
determination of the concentrations, the Anderson and Yang
titration method [14] was carried out for VFA and TA. The lev-
el of dissolved ammonium was measured using the LCK303
ammonium cuvette test by Hach-Lange.

2.2 Full-Scale Application

For the full-scale biogas plant, a measurement system collabo-
ratively developed between Cologne University of Applied Sci-
ences and art photonics was applied. The measurement system
involved a Thermo Scientific Nicolet iS5 FTIR spectrometer for
the spectral measurements as well as a deuterated triglycine
sulfate (DTGS) detector. To allow for direct connection of the
fiber to the spectrometer, the iS5 was also fitted with a custom-
ized interface module developed by art photonics, which ena-
bles the optical coupling of the infrared (IR) signal to a poly-
crystalline infrared (PIR) fiber by SMA905 connectors.

For the full-scale application, it would not be practical to
manually clean the probe after every measurement, and so an
automated cleaning system was utilized. The Ceramat FOS� is
an automatic sensor gate designed with a ceramic seal between
the process and the cleaning chamber. The sensor gate forms
an effective seal preventing any further material passing
through the gate.

The Unical 9000-FOS enables clean-in-place functionality
for ATR immersion probes. To clean the sensor, the sensor is
first withdrawn from the recirculation pipe and moved into the
ceramic housing of the sensor gate. Sealed off from the recircu-
lating substrate, the probe can be cleaned with three cleaning
media that can be freely chosen, and dried using compressed
air. After cleaning, recalibration through baseline measurement
can be performed before the probe is returned into the process.
As part of this work, testing was carried out to evaluate the
effectiveness of the different cleaning media by performing a
measurement with the probe in milk, flour or sunflower oil,
and then rinsing the probe with the different cleaning media
and recording a further spectrum. The spectra were then com-
pared to evaluate the cleaning efficiency of different chemicals.

Cleaning effectiveness tests were accomplished by collecting
a baseline spectrum before performing a measurement, then
measuring the substance and applying the Unical 9000 flushing
functionality to clean the probe. The tests were done with milk,
flour, sunflower oil, and a mix of sunflower oil and milk. The
cleaning media tested were deionized water, soap solution, and
acetone.

Due to the usage of the Unical system, the entire probe body
would move when the probe was withdrawn for cleaning. In
order to allow for this movement of the probe relative to the
spectrometer, it was necessary to employ a 3-m PIR fiber for
the connection of the diamond-tipped ATR probe to the iS5
spectrometer. Using this longer PIR fiber resulted in stronger
attenuation of the IR signal, which reduced the SNR of the
measured signal.

The complete measurement system is presented in Fig. 2.
Section A shows the Ceramat FOS� probe fitting and sensor
gate, fixed in position to the recirculation pipe of the two
digesters. Section B displays the MIR spectrometer mounted in
a secure enclosure and C shows the Unical 9000 control unit
which is used for cleaning the probe head. With this system, it
was possible to record spectra from the digestate automatically.
These spectra samples are referred to as dataset U3.

Compared to the laboratory setup, spectrometer parameters
had to be chosen differently in order to compensate for the
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Figure 1. Laboratory setup with the Perkin Elmer FTIR 1750 and
the diamond-tipped ATR probe connected by a PIR fiber.

Figure 2. Measurement system installation at the full-scale in-
dustrial biogas plant. (A) MIR Probe, (B) MIR Spectrometer, (C)
UNICAL cleaning system.
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lower sensitivity of the DTGS detector and the stronger attenu-
ation caused by the longer PIR fiber and the interface module
used for fiber coupling. Therefore, the average of 256 scans was
calculated which increased the measurement duration substan-
tially. In order to shorten this duration, the resolution was
reduced to 16 cm–1. An amplification of 8 was used, which is
the same as for the laboratory spectrometer tests.

2.3 ATR Probe and PIR Fibers

The FlexiSpec diamond-tipped ATR probe from art photonics
that was taken for the laboratory and full-scale measurements
utilizes the ATR principle, where the absorption of the light
occurs due to evanescent waves travelling into the sample. The
probe features a single measurement face, which helps address
the issue of soiling from the process material. Soiling occurs
when the material that was previously measured, remains on
the probe, and thus future measurements will also be influ-
enced by the material. For sensors which pass light through a
gap to measure the absorption, this gap is often easily soiled.
Additionally, the high absorption of substrate in AD means
that the gap has to be small (1 mm), which is even more diffi-
cult to clean. The ATR probes have a significantly shorter path
length, which is suitable for measuring digestate, and the single
measurement face is easier to clean than transmission sensors.

Different materials can be used to fabricate the ATR tip. Typ-
ical materials are diamond, ZnSe, and cubic zirconium. De-
pending on tip and fiber material, the resulting probes operate
in different spectral ranges. Diamond was chosen due to its
hardness, resulting in a spectral range from 600 to 1900 cm–1

which is congruent with the fingerprint region. Signals in the
region from 2300 to 3100 cm–1 can still be detected but show a
lower intensity. Even though diamonds are well-known for
their durability, a protective top as can be seen in Fig. 3 was
added. By this crown, the diamond is protected from stones
and hard particles which can be found in the dry mass of an
anaerobic digester.

In order to measure in the interesting fingerprint region in
the MIR spectral range and to allow for a distance of 3 m
between the spectrometer and diamond ATR probe, PIR fibers

are used for the connection. They enable transmission from
3300 to 550 cm–1 and are obtained by extrusion from a solution
of AgCl1–xBrx where 0 < x < 1 [15]. In contrast to most IR
materials, AgCl:AgBr crystals are nontoxic and nonhygro-
scopic. Core and cladding are made from the same material,
but the refractive index is different. After extrusion the PIR fi-
bers are inserted into a loose polyether ether ketone (PEEK)
tubing for mechanical protection and bending within the elas-
ticity limits. Due to the size and weight of the FTIR spectro-
meters and to allow for movement of the retractable probe fit-
ting, it was not possible to use a smaller PIR fiber length than
3 m. MEMS-based spectrometers are a feasible solution, where
a smaller sensor could be integrated into the probe, which
would substantially reduce the fiber length and result in a high-
er SNR and thus measurement accuracy.

3 Data Analysis and Machine Learning
Methods

For interpretation of the spectral data, the data was analyzed
by machine learning methods that have proven to be valuable
tools for spectral data analysis [16, 17]. In this case, the soft-
ware package Un-scrambler R V9.2 was employed for the anal-
ysis. Data preprocessing was performed to smooth the spectra
by Savitzky-Golay filtering [18] and by a linear correction of
the baseline. All further data analysis was then carried out on
this preprocessed data. Principal component analysis (PCA)
was performed using the exploratory data analysis. A further
regression was carried out using PLS and v-support vector
regression (SVR).

The version of the Un-scrambler software did not include
the n-SVR calculation, and so this was performed with the R
software environment. Version 1.6 of the package E1071 was
applied for this purpose.

The entire measured spectra consisted of 152 wavenumbers,
but in order to facilitate the analysis, 59 selected wavenumbers
were used, covering the spectral regions where the process vari-
ables show the strongest absorption. In total, three different
datasets were taken for the analysis (Tab. 2):
– U1: pure samples of different concentrations of ammonium,

TA, and VFA in ultrapure water
– U2: samples from the digestate spiked with a range of con-

centrations for ammonium, TA, and VFA
– U3: samples collected from the full-scale plant in parallel to

the online measurements.

3.1 PLS

In PLS, the original input matrix X1) containing the spectral
data and the target concentration variable Y are both projected
into a new space in which the covariance between the projected
X* and Y* is maximal according to the following underlying
general model:
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Figure 3. Different sizes and designs of the FibreSpec, with and
without protective crown, diamond-tipped ATR probe made of
stainless steel, manufactured by art photonics.

–
1) List of symbols at the end of the paper.
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X ¼ X*PT þ EX

Y ¼ Y*RT þ EY

(1)

where P and R stand for orthogonal loading matrices and EX

and EY represent the errors. Thus, X* may contain less predic-
tors than X; furthermore, all predictors in X are orthogonal to
the preceding predictors in X*.

3.2 SVR

The most commonly used form of SVR is called e-SVR and
was introduced by Vapnik [19]. In this case, n-SVR was used as
the parameter n∈{0,1} is independent from the dimensions of
the absolute values of X. The parameter n is called sparsity
parameter and limits the allowed error e and the overall num-
ber of support vectors which improves computation time of
the fully trained model. Furthermore, the parameter C, which
is a tradeoff parameter between error and margin, needs to be
adequately chosen for each application.

In its simplest form an SVR is a linear regression model but
usually it is nonlinear by introducing so-called kernel func-
tions. The kernel function maps the predictors into a high-
dimensional feature space so that also highly nonlinear regres-
sion models can be learned. For the SVR used for COD and
NH4-N estimation, a radial basis function (RBF) kernel with
the free parameter l is used as it is perfectly suited for a nonlin-
ear relation between X and Y.

Kðxi; xjÞ ¼ exp �l xi � xj

�� ��2
� �

with l :¼ 1
2s2

and xi; xj ˛ X

(2)

Another advantage of the RBF kernel is its ability to capture
linear relations, as the linear kernel is a special case of the RBF
kernel as proven by Keerthi and Lin [20].

The optimal parameters C, n, and l were determined by a
grid search (Tab. 3), and 10-fold cross-validation was used in
order to prevent overfitting.

4 Results

4.1 Cleaning

In order to assess efficiency of
cleaning of the probe using the
fully automated process interface,
laboratory tests were conducted
with milk, flour, and oil. In particu-
lar, oil has proven to be difficult to
remove from optics and is consid-
ered to be the hardship case.

To quantitatively evaluate the
performance, the mean signed
deviation (MSD) was calculated for
the spectra after cleaning when

compared to the baseline spectra. This measure was used since
for some of the test cases the cleaned result was an improve-
ment over the baseline measurement, which is not shown when
considering measures such as RMSE. As such, a positive MSD
means that the spectrum is experiencing higher absorption
than the baseline measurement, and conversely, a negative
MSD indicates that the sensor is cleaner than the baseline. The
calculation of MSD is given in Eq. (3), where ybase,w is the base-
line absorption at wavenumber w, yclean,w the absorption after
cleaning at wavenumber w, and n denotes the total number of
wavenumbers.

MSD ¼
Xn

w¼1

ybase;w � yclean;w

n
(3)

For cleaning milk from the probe, the first cleaning step with
deionized water resulted in an MSD of 0.59 percentage points
compared to the original baseline measurement. After cleaning
with soap solution, the MSD was reduced to 0.23 percentage
points. Finally, after cleaning with acetone, the variation was
–0.008 percentage points, an improvement over the baseline
measurement, and visually was no longer discernible from the
measurement noise.
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Table 2. Overview of the three datasets used for calibration and validation of the laboratory
and full-scale MIR measurement systems.

Training Validation Complete

Dataset, U1 X1;Y1ð Þ X1; train ¼ m� n½ �54 · 59 X1; val ¼ m� n½ �44 · 59 X1 ¼ m� n½ �98 · 59

Y1; train ¼ m� p½ �54 · 3 Y1; val ¼ m� p½ �44 · 3 Y1 ¼ m� p½ �98 · 3

Dataset 2, U2 X2;Y2ð Þ X2; train ¼ m� n½ �50 · 59 X2; val ¼ m� n½ �25 · 59 X2 ¼ m� n½ �75 · 59

Y2; train ¼ m� p½ �50 · 3 Y2; val ¼ m� p½ �25 · 3 Y2 ¼ m� p½ �75 · 3

Dataset 3, U3 X3;Y3ð Þ X3; train ¼ m� n½ �117 · 59 X3; val ¼ m� n½ �60 · 59 X3 ¼ m� n½ �177 · 59

Y3; train ¼ m� p½ �117 · 3 Y3; val ¼ m� p½ �60 · 3 Y3 ¼ m� p½ �177 · 3

m, number of samples; n, number of wavenumbers; p, number of target variables.

Table 3. Optimal n-SVR parameter sets for the datasets U1, U2,
and U3.

Ammonium VFA TA

Dataset 1, U1 C = 6.6 ·104

l = 6 ·10–6

v = 0.2

C = 8 ·106

l = 4 ·10–8

v = 0.3

C = 2 ·103

l = 1.5 ·10–4

v = 0.6

Dataset 2, U2 C = 1.77 ·105

l = 1.1 ·10–6

v = 0.43

C = 3.83 ·104

l = 1.7 ·10–6

v = 0.37

C = 5.67 ·103

l = 1.7 ·10–5

v = 0.33

Dataset 3, U3 C = 10
l = 6.1 ·10–3

v = 0.23

C = 60
l = 6.7 ·10–3

v = 0.47

C = 69
l = 6.8 ·10–4

v = 0.40
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When testing cleaning of flour from
the probe, this was more easily re-
moved, with the deionized water being
sufficient to give an MSD of 0.03 per-
centage points. Cleaning with soap
solution gave a transmission that was
slightly over the original baseline in
some areas, with an MSD of –0.05 per-
centage points. This result is higher
than the MSD for cleaning with deion-
ized water, because the sensor was
slightly cleaner than when the experi-
ment started. Cleaning with acetone
gave an MSD of –0.26 percentage
points. Again, this was due to how
effective acetone was in cleaning the
sensor, and the MSD is higher because
the sensor after the acetone measure-
ment was considerably cleaner than at
the start of the experiment.

The test results for the cleaning tests
with sunflower oil are illustrated in
Fig. 4. The figure shows that cleaning
with deionized water improved the
spectrum, however, the characteristics
of the sunflower oil spectrum are still
clearly visible after cleaning with deion-
ized water. The MSD was 4.14 percent-
age points. Cleaning with soap solution
was not performed for this test.

Cleaning with acetone resulted in a
spectrum that matched the original
baseline very well, with an MSD of
–0.036 percentage points. A detailed
plot of the results for cleaning with ace-
tone compared to the baseline mea-
surement is presented in Fig. 5.

A final cleaning test was performed,
in which a mixture was created from
milk, flour, and sunflower oil. The
results from this test are displayed in
Fig. 6, with a detailed plot given in
Fig. 7. After cleaning with water, there
was still clearly probe fouling since an
absorption profile with distinct peaks
can be seen. The MSD was 3.74 per-
centage points. The cleaning with soap
solution was more effective, with an
MSD of 0.55 percentage points from
the baseline measurement. Cleaning
with acetone was clearly the most effec-
tive, with the spectra recorded after
cleaning being very close to the original
baseline measurement, and in some
cases slightly higher than the original.
The MSD for acetone was –0.16. Thus,
cleaning of the probe using the process
interface was successful in all three
cases.
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Figure 4. Comparison of cleaning sunflower oil with deionized water and acetone.

Figure 5. Effectiveness of cleaning with acetone after measuring sunflower oil.

Figure 6. Effectiveness of cleaning a mixture of oil, flour, and milk using deionized water,
acetone or soap solution.
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4.2 Lab Measurements and Calibration

The laboratory results for the calibration data from dataset U1

are significant. The R2 values are very high, showing that the
majority of the variance is accounted for in the calibration
models. For acetic acid, the limit of detection was 0.00389 mol
L–1 and the limit of quantification was 0.00878 mol L–1. A study
concluded that acetic acid levels in excess of 800 mg L–1 indi-
cate that the digester is unstable and could fail [21]. This corre-
sponds to a concentration of 0.0133 mol L–1. Thus, the labora-
tory results demonstrate that it is possible to quantify the levels
of acetic acid as they are approaching levels that would threat-
en the digester operation.

When considering ammonium levels, experiments indicate
that an ammonium level of ~ 0.15 mol L–1 resulted in biological
failure [22]. From the laboratory testing, the limit of quantifica-
tion was 0.063 mol L–1. So, for the ammonium, it was also pos-
sible to quantify the present concentrations below the level that
would result in failure in an anaerobic digester.

Levels of bicarbonate over 0.15 mol L–1 proved to inhibit
methane production [24]. This is significantly higher than the
limit of quantification, which was 0.00806 mol L–1, and demon-
strates that the sensitivity of the lab system would be high
enough to perform measurements of the concentrations pres-
ent under typical operating conditions, and not only when the
digester was approaching failure.

Tab. 4 summarizes the results for the PLS regression model
and Tab. 5 those for the n-SVR model, with both models using
dataset U1. Generally, it can be concluded that the performance
for n -SVR is slightly better than that of the PLS model. For the
total VFAs, the PLS model performs better, however, for all
other parameters, the n-SVR model has a smaller error. For
propionic acid, the prediction accuracy is worse when com-
pared to acetic acid or total VFAs, as seen by the lower R2 val-
ue. This is due to the lower concentrations of propionic acid
that are present. The prediction accuracy is closely related to
the sensitivity of the sensor, and hence, an increase in the sensi-

tivity of the sensor at lower concentra-
tions would result in an improved
accuracy of individual VFAs.

Figures previously published [23]
show several of the spectra recorded as
part of dataset U2, which indicates the
change in spectra due to spiking a sub-
strate sample with acetic acid. From
this plot, it can be seen that the spiked
substrate spectrum follows the profile
of the raw substrate spectrum, however,
with additional peaks. The additional
peaks correspond to the peaks from the
spectrum of pure acetic acid. Further-
more, at the same wavenumbers, it is
possible to see small peaks that are
already present, which is expected as
there was some acetic acid already
present in the sample before it was
spiked with additional acetic acid.

When comparing the spectrum for the substrate sample to
those of ammonium chloride and sodium bicarbonate from
[23], clear similarities in the spectra become obvious. In the
spectrum for the substrate, there are two strong peaks at
~ 1364 cm–1 and 1620 cm–1, which corresponds to the two
strong peaks in the spectrum for sodium bicarbonate. The peak
at ~ 1456 cm–1 corresponds to the peak in ammonium chloride
at the same wavenumber. Tab. 6 gives the wavelength maxima
that were observed during testing.

Chem. Eng. Technol. 2016, 39, No. 4, 627–636 ª 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cet-journal.com

Figure 7. Different cleaning performances of acetone and soap solution when cleaning a
mixture of oil, flour, and milk.

Table 4. Statistical analysis on PLS1 regression model using 59
wavenumbers from dataset U1.

Parameter PLS factors R2 RMSE [g L–1]

Acetic acid 8 0.970 0.259

Propionic acid 1 0.544 0.260

Total VFAs 8 0.978 0.403

Sodium bicarbonate 3 0.991 0.594

Ammonium 2 0.990 0.108

Table 5. Statistical analysis on n-SVR regression model using 59
wavenumbers from dataset U1.

Parameter R2 RMSE [g L–1]

Acetic acid 0.960 0.208

Propionic acid 0.637 0.196

Total VFAs 0.930 0.544

Sodium bicarbonate 0.995 0.400

Ammonium 0.993 0.068
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4.3 Full-Scale Test

On the one hand, calibration and validation of the full-scale
dataset U3 show promising results (Tab. 7) for ammonium and
TA with errors between 0.1 and 0.5 g L–1 and good R2 values of
0.9 and 0.89 which is sufficient for online process monitoring
of the AD process in biogas plants where measurement errors
of up to 20 % are acceptable. However, results for VFA, one of
the most interesting parameters, are very poor with R2 values
of 0.6 for PLS or 0.38 for n-SVR, respectively.

On the other hand, long-term operation of the system indi-
cated that despite the fully automated cleaning and calibration
system, robustness is still one of the major problems. After five
months of continuous operation, the probe fitting was severely
damaged due to strong abrasion of the ceramics (Fig. 8 a)

which eventually ended in a breaking of the probe fitting. Fur-
thermore, the cleaning chamber contained deposits of the sub-
strate and was blocked by digestate during operation on a regu-
lar basis which made cleaning impossible (Fig. 8 b).

5 MEMS-Based Fabry-Pérot
Spectrometers

There is a promising potential for future applications of
MEMS-based spectrometers in the AD industry. Newly devel-
oped tunable MEMS-based Fabry-Pérot interferometers on a
chip for the UV/vis, NIR, and MIR wavelength ranges are very
small, i.e., 5 ·10 cm, and also relatively cheap if manufactured
in great numbers. Currently, two different system designs exist.
Neumann et al. [25] introduced a tunable MEMS interfero-
meter for the middle- and long-infrared range using a pyrode-
tector. The different wavelengths can be generated by two bragg
reflectors whose distance can be changed by a spring suspen-
sion. Although the presented performance results are good, the
spring suspension is considered to be a drawback as it makes
the spectrometer sensitive to vibration and wear. Therefore,
VTT developed an interferometer design with piezo effect-
based tuning of the gap between the reflectors [26, 27].

Problems using a PIR fiber with a length of 3 m to couple
between the spectrometer and the sensor causing strong at-
tenuation in the PIR fiber, attenuating the optical signal ampli-
tude, and decreasing the SNR level significantly, can be over-
come with these new spectrometers. In particular, the
reduction of the length of the PIR fiber used for an installation
by integrating the spectrometer into the probe housing could,
therefore, substantially improve the SNR of the measured sig-
nal, and consequently the accuracy of the results and minimum
quantifiable levels of the concentrations being measured. This
combination of the probe and sensor into one complete unit
would enable increased measurement accuracy whilst simulta-
neously reducing the cost of a spectroscopy-based monitoring
system, and provides a potentially cheaper and less complex
alternative to a system based on a traditional FTIR MIR spec-
trometer.

6 Conclusion and Outlook

The results indicate that MIR spectroscopy is a val-
id method for online measurement of critical pro-
cess variables in AD processes. The combination of
an MIR spectroscopic probe with a fully automated
system for cleaning proved to reduce maintenance
to a minimum during full-scale testing, guarantee-
ing high measurement accuracy. Laboratory tests of
the automated cleaning process showed that deion-
ized water alone is not sufficient in most cases, par-
ticularly when the substance contains oil. At a min-
imum, cleaning with a soap solution will provide
very good results, however, in order to minimize
fouling, acetone or comparable substances are the
most effective cleaning media.
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Figure 8. (a) Abrasion of the probe fitting after five months of operation; (b) soil-
ing and blocking of the cleaning chamber with digestate.

Table 6. Absorption maxima from measured samples.

Substance Wavenumber [cm–1] Wavelength [mm]

Hydrogen-carbon buffer 1620 6.17

Acetic acid 1544 6.48

Ammonium 1456 6.87

Acetic acid 1416 7.06

Hydrogen-carbon buffer 1364 7.33

TS 1050 9.52

Table 7. Validation results for dataset U3 using PLS and n-SVR.

R2 PLS RMSE PLS
[g L–1]

R2 SVR RMSE SVR
[g L–1]

Ammonium 0.912 0.1 0.827 0.1

VFA 0.645 0.245 0.386 0.235

TA 0.890 0.480 0.768 0.508
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Furthermore, the laboratory results demonstrate that it is
possible to measure concentrations of ammonium and VFA at
levels which would indicate that a digester was approaching
failure. The performance for measurement of TA levels was
better, and using the laboratory setup, it was possible to quanti-
fy concentrations at levels that would be present before the
digester biocommunity was threatened. In full-scale applica-
tion, ammonium and TA can be detected successfully, in con-
trast to VFAs which can only be identified reliably at higher
levels. One of the main reasons for worse performance in full
scale than in laboratory scale was the use of a PIR fiber that
was three times longer which caused stronger attenuation and
a decrease of the SNR, thus, a reduction of the fiber length
would increase the SNR and hence allow measurement of lower
concentration levels.

Furthermore, the number of wavenumbers used for analysis
could be significantly reduced by 40 % guaranteeing the same
prediction quality when applying machine learning methods.
This reduction is significant for MEMS-based spectrometers
using a Fabry-Pérot interferometer and can result in a reduc-
tion of measurement times.

In order to further enhance the measurement system per-
formance, the use of MEMS-based spectrometers and their
integration into the probe housing to reduce fiber length is the
most promising solution. However, this would require further
trials and testing to verify whether the performance is suitable
for application in AD processes.
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Symbols used

C [–] SVR tradeoff parameter (margin vs. error)
K [–] kernel
P [–] loading matrix for input data X
R [–] loading matrix for target data Y
E [–] error matrix
X [–] input data
Y [–] target data
X* [–] input data projected into a feature space
Y* [–] target data projected into a feature space

Greek letters

l [–] free RBF kernel parameter
s [–] free RBF kernel parameter
n [–] SVR sparsity parameter

Abbreviations

AD anaerobic digestion
ATR attenuated total reflection
COD chemical oxygen demand
DTGS deuterated triglycine sulfate
FTIR Fourier transform infrared spectroscopy
MCT mercury cadmium telluride
MEMS microelectronic mechanical system
MIR mid-infrared
NH4-N ammonium nitrogen
NIR near-infrared
oTS organic total solids
PA partial alkalinity
PEEK polyether ether ketone
PIR polycrystalline infrared
RBF radial basis function
SMA SubMiniature version A
SNR signal-to-noise ratio
TA total alkalinity
TAC total anorganic carbon
TAN total ammonia nitrogen
TGS triglycine sulfate
TOC total organic carbon
TS total solids
UV/vis ultraviolet/visible
VFA volatile fatty acids
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