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Abstract: Matching pairs of tumor and non-tumor kidney tissue samples of four patients were 

investigated ex vivo using a combination of two methods, attenuated total reflection mid infrared 

spectroscopy and fluorescence spectroscopy, through respectively prepared and adjusted fiber 

probes. In order to increase the data information content, the measurements on tissue samples in 

both methods were performed in the same 31 preselected positions. Multivariate data analysis 

revealed a synergic effect of combining the two methods for the diagnostics of kidney tumor 

compared to individual techniques. 
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1. Introduction 

Optical spectroscopic analysis is rapidly disseminated in the clinical domain. As a new 

diagnostic modality, it offers unique opportunities for a label-free investigation of tissue samples at 

the molecular level that helps to identify various diseases. The possibility of non-invasive analysis of 

the tissue cellular structure capable of detecting diagnostically relevant abnormalities turns 

spectroscopy-based methods into a novel approach to clinical diagnostics. The so-called “spectral 

histopathology” has developed over the last few years as an ancillary tool for classical histopathology 

using surgical biopsy samples for the tissue examination [1,2]. The routine procedures of clinical 

histopathology are complicated and time-consuming. Besides, this diagnostic method strongly relies 

on the analyst’s professional qualification, and is hence prone to a human error. These facts 

demonstrate the need for a rapid and more objective alternative to classical histopathology. 

According to the mortality statistics reported by the American Cancer Society in 2016, kidney 

cancer is one of the 10 most common cancer types [3] and clear cell renal cell carcinoma (cСRCC) is 

the main modification of kidney cancer. Renal cell carcinomas comprise approximately 3% of adult 
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malignancies worldwide and 90%–95% of neoplasms arising from the kidney. The only known 

curative treatment of this cancer type is a surgical resection [4,5]. Spectral histopathology is often 

considered as a potential approach to revealing tumor cells in the tissue during a surgical operation. 

Fluorescence spectroscopy is one of the most established optical diagnostic methods that is 

successfully used for cancer imaging, e.g., for the delineation of a margin between normal and 

cancerous tissue [6,7]. Extremely high sensitivity to specific molecules including some known cancer 

biomarkers [8] called fluorophores is the main analytical advantage of the fluorimetric analysis. Less 

sensitive, but highly selective mid infrared (MIR) spectroscopy is capable of recognizing various 

organic molecules based on the fundamental vibration frequencies of their functional groups and the 

quantification of the respective mixture constituents [9]. This chemically informative spectroscopic 

technique is increasingly used for the investigation of various biological materials [10]. Recent studies 

demonstrated the significant diagnostic potential of MIR spectroscopy for various types of human 

cancer [11–14]. 

Both fluorescence and MIR spectroscopic measurements of tissue can be performed through 

fiber-based probes. The main advantages of using fiber spectroscopic methods are their being non-

destructive and non-invasive, as well as avoiding the use of extrinsic contrast-enhancing agents. 

Application of the optical fiber approaches for the determination of the tissues affected by a tumor 

has been demonstrated ex vivo for the brain [15], colon [16,17], and skin [18]. Recently, it has been 

shown that a combination of spectroscopic methods can increase the effectiveness of cancer detection 

[15,19]. The majority of reported multi-modal spectroscopic systems are presented by a combination 

of fluorescence and diffuse reflectance spectroscopy methods [20–22]. 

The present study is a part of a larger research project, the main purpose of which is the 

development of new optical techniques for tumor margin identification that could be subsequently 

transformed into a clinical method and tool. The authors’ recent work from this series [23,24] was 

aimed at the development and testing of a near infrared (NIR) sensor for the diagnostics of kidney 

tumors based on four light-emitting diodes (LEDs). In the present study, we report a synergic effect 

of using MIR and fluorescence spectroscopy simultaneously, in distinguishing healthy and malignant 

tissue samples of the human kidney obtained from an operative cancer treatment. Diagnostic 

capabilities of fluorescence and MIR spectroscopy have been investigated using matching pairs of 

normal and malignant biopsy samples of a few patients with kidney cancer. Special attention was 

paid to a joint analysis of spectra taken at the same sample positions in order to prove a hypothetical 

advantage of their possible integration within the same analytical instrument. 

2. Materials and Methods 

2.1. Sample Preparation 

Eight unstained cryo biopsies after nephrectomy (matched pairs of tumor and non-tumor tissue 

of the same kidney) were obtained from Department of Urolgy at Charité Universitätsmedizin Berlin 

(Germany). The institutional ethics committee approved the sampling and further investigation of 

renal tissues (ethical approval number EA1/134/12). The samples typical thicknesses were from 5 to 

10 mm, in accordance with the common histopathological practice, since larger specimens could not 

be shock-frozen as required for the clinical investigation. All tumor samples were of the predominant 

cCRCC subtype. According to the Fuhrman nuclear grading system (FNG) [25], all tumor samples 

were classified as low-grade G1 (round well-differentiated nuclei) or intermediate grade G2 (larger 

nuclei with slightly irregular contours and nucleoli). Tumors were staged according to the Union for 

International Cancer Control Tumor-Node-Metastasis (UICC-TNM) criteria [26]. The biopsies 

represented four male patients: M149 (56 years old/tumor grade G1/staging pT1b), M151 

(69/G2/pT3a), M160 (47/G2/pT2b), and M144 (62/G2/pT3a). The staging describes sizes of the tumor 

and its infiltration into the surrounding organs. Within staging classes, tumor extension increases 

from pT1 to pT3. Prior to measurements, tissue samples were thawed for 5 min at room temperature. 

A typical view of the patient biopsies is presented in Figure 1. Some further details on sample 

preparation can be found in previous publications by the authors [23,24,27]. 
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Figure 1. Renal biopsy of patient 160: healthy (left) and tumor (right) tissue. 

2.2. Spectroscopic Measurements 

MIR measurements were performed using a Matrix MF (Bruker Optik GmbH, Ettlingen, 

Germany) spectrometer equipped with a mercury-cadmium-telluride (MCT) detector cooled by 

liquid nitrogen. Spectra were acquired in contact with the tissue using a polycrystalline infrared (PIR) 

fiber-based attenuated total reflection (ATR) probe with a silica crystal on top (art photonics GmbH, 

Berlin, Germany) optimized for the fingerprint region. Sterile 0.9% sodium chloride aqueous solution 

was used as a background (to obtain the reference spectrum). MIR spectra were obtained at the 

resolution of 8 cm−1 at 64 scans. Typical spectrum acquisition time at these settings was about 46 s. 

Some further details on MIR spectroscopic investigation of kidney samples have been published 

before [27]. Experimental setups are presented in Figure 2. 

Fluorescence by cancer and normal tissues was excited at 473 nm using a 25-mW laser (art 

photonics GmbH, Berlin, Germany) through a needle-shaped probe by art photonics containing an 

aluminum-coated 400 μm core detection fiber surrounded by 13 silica illumination fibers having a 

diameter of 100 μm. To protect the measurement against ambient light, the probe tip was surrounded 

by a black plastic shield, which also provided a fixed distance to the sample of about 2 mm. The 

measurement was performed through a thin (0.5 mm) quartz glass covering the sample to avoid its 

direct contact with the probe (Figure 2). An FSD-9 mini-spectrometer (art photonics GmbH, Berlin, 

Germany) was used to collect fluorescence spectra in the 200–1080 nm range with optical resolution 

of a few nm (spectral points were sampled at 0.26 nm). A refocusator by art photonics with a FEL0500 

long pass optical glass filter (Thorlabs Inc., Newton, NJ, USA) with a cut-off wavelength of 500 nm 

was used to suppress the signal of back-scattered illumination light in the fluorescence spectrum 

(element 3 in Figure 2). Spectrum acquisition times were adjusted for each new measurement position 

in order to keep the maximum spectrum intensity within the optimality region of the spectrometer 

above 30000 counts (more than 50% of the upper intensity limit). The interval of acquisition times 

was 125–2000 ms and the measurement was predominantly longer for tumor biopsies in comparison 

to the normal tissue. Higher integration times were avoided, even if the maximum spectrum intensity 

was lower than optimal. All repeated measurements at the same position were performed with the 

same acquisition time. 

Three replicated measurements in each pre-selected position were made by either spectroscopic 

method. The repeated measurements were performed after the re-focusing of the probe on a sample 

using a moving probe grip. 
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Figure 2. Experimental setups for fluorescence (left) and mid infrared (MIR) (right) spectral 

measurements: 1—fluorescence probe; 2—laser light source; 3—cut-off fluorescence filter; 4—

fluorescence spectrometer; 5—attenuated total reflection MIR probe; 6—MIR spectrometer; 7—

samples; 8—computer. 

2.3. Data Analysis 

Multivariate data analysis including principle component analysis (PCA) [28] and partial least-

squares discriminant analysis (PLS-DA) [29] was performed using TPT-cloud (www.tptcloud.com), 

a web-based chemometrics software by Global Modelling (Aalen, Germany) and Samara State 

Technical University (SSTU, Samara, Russia), and Interval Selection Toolbox (SSTU) for MatlabTM 

(MathWorks, Natick, MA, USA). Model validation was performed by means of segmented cross-

validation using the data in unique measurement positions as segments. 

Second derivative algorithm by Savitzky-Golay [30] was used with the following options 

adjusted in preliminary data analysis: second-order of polynomial and smoothing window width of 

25 points. Prior to the concatenation, appropriately reduced and preprocessed MIR and fluorescence 

spectra were normalized. Two normalization methods were alternatively used: standard normal 

variate (SNV) algorithm transforming individual spectra to the unit vector length or weighting of the 

variable vectors by their inverse standard deviation. The latter method in combination with 

subsequent mean centering is usually referred to as autoscaling (AS). 

In PLS-DA modeling, cancer was conventionally considered as “positive” and health as 

“negative” test results, numerically coded as 1 and 0, respectively. The numbers of true positives 

(TP), false positives (FP), true negatives (TN), and false negatives (FN) in the prediction as well as 

percent accuracy %Ac = (TP + TN)/(TP + FP + TN + FN), sensitivity %Sn = TP/(TP + FN), and specificity 

%Sp = TN/(FP + TN) values were used to measure discrimination quality [31]. 

http://www.tptcloud.com/
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Segmented cross-validation (CV) and random-subset validation (RSV) were used to estimate the 

number of latent variables (LVs) in the PCA and PLS-DA models and to characterize the model 

performances in prediction. The CV segments were formed by repeated measurements in different 

sample positions. In the RSV method, a random subset of 14 spectra was excluded at the modeling 

stage to be used for an independent prediction. The subset size of about 15% of the whole data was 

chosen as a compromise between representativeness of the residual training data and soundness of 

the test-set prediction statistics. To compensate for the random factor in the modeling statistics, the 

procedure was repeated 1000 times and cumulative numbers of TP, FP, TN, and FN were used to 

calculate the %Sn, %Sp, and %Ac values. A large number of iterations of the subset selection-

modeling-validation cycle was necessary to assure the statistics convergence to constant values 

independent of a particular subset. The optimal number of LVs in the PLS-DA models was 

determined from the CV data. 

3. Results and Discussion 

Selection of appropriate spectroscopic techniques and their combinations followed by the 

development of analytical methods and instruments consists of multiple measurement steps 

involving clinical samples. Considering the specific nature of the samples, their limited availability, 

and the ethic aspects of their use, intermediate studies (e.g., method comparison) necessary to make 

informed development decisions should be based on a possibly small set of patients. Obtaining 

necessary samples is additionally complicated by the requirement that pairs of cancer and healthy 

tissue biopsies should belong to the same kidney after nephrectomy, i.e., full excision of the organ. 

This operation takes only about 30% of cancer surgical treatment cases at Charité [32]. At partial 

excisions, the healthy tissue should be possibly preserved, and hence, noncancer samples are 

typically absent. In order to enhance the data information content, spectral measurements of eight 

available biopsy samples were performed in 31 preselected sample positions (from three to five 

positions on each individual biopsy) coded using a coordinate grid, as shown in Figure 1. The 

experiment was designed to include the main practically relevant variabilities, as required for the 

data realism and consistency. Therefore, the resulting spectra comprised both intra- and inter-sample 

variability and was well-suited for a joint analysis of MIR and fluorescence data. 

The resulting individual datasets included 92 spectra and 82 (MIR) or 736 (fluorescence) 

variables. The raw spectral data are presented in Figure 3a,b. 

MIR spectra were obtained in the full range of 3000–700 cm−1 (Figure 3b). It can be noticed that 

probably the most significant spectral difference of the cancer tissue is related to the presence of a 

larger peak with an average intensity maximum at 1083 cm−1 (Figure 3b,d) caused by symmetric 

stretching vibrations of the ionized PO2
−  group [33]. Phosphate PO2

−  groups with stretching 

vibration in these regions mainly originate from the phosphodiester groups of cellular nucleic acids, 

membrane phospholipids, and partially from protein (amide III). Higher intensity of this band 

assumes an increased concentration of the nucleic acids in the tumor tissue due to a higher 

proliferation rate of the tumor cells [34]. A weak spectral difference associated with the phosphate 

was found at around 1240 cm−1 (Figure 3b) and assigned to the asymmetric stretching vibrations of 

PO2
−  [34,35]. Also, an increased level of glycogen manifested in a stronger absorption at  

1026–1030 cm−1 (the average maximum at 1029 cm−1) was observed for the malignant tissue due to an 

activation of the glycolysis. These significant changes in the carbohydrate metabolism are 

characteristic of the renal cell carcinoma tissues. Another carbohydrate-related absorption band at 

1155 cm−1, which is stronger in malignant kidney, was assigned to the C − O and C − OH stretching 

vibrations [34]. An increase of absorption around 1155 cm−1 observed for the malignant tissue 

originated from the C − OH stretching mode by amino acid (threonine, tyrosine, and serine) residues 

in the cell proteins. In general, the metabolism alteration of carbohydrates and lipids definitely 

belongs to the malignant modification process of cCRCC. The group of peaks between 3000 and 

2800 cm−1 associated with the vibrations of aliphatic residuals did not reveal any noticeable 

correlation with the diagnosis. Therefore, only the region of 1220–1010 cm−1 containing the most 
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relevant signals (Figure 3d) was taken for the PLS-DA modeling. Similarly, fluorescence spectra were 

reduced to the signal region of 490–680 nm.  

 

Figure 3. Spectral data: (a) raw fluorescence spectra; (b) raw mid infrared (MIR) spectra; (c) 

fluorescence spectra in the region of 490–680 nm; (d) MIR spectra in the region of 1220–1010 cm−1; and 

(e) concatenated dataset of preprocessed fluorescence (left side) and MIR (right side) spectra. The 

following preprocessing was applied before data concatenation: standard normal variate (SNV) for 

fluorescence data and Savitzky-Golay second derivative followed by SNV for MIR spectra. Red and 

blue colors correspond to tumor and normal tissue samples, respectively. The curves and the 

surrounding colored regions in (a-d) represent the mean spectra and the standard deviation intervals 

of the respective data.  

Regarding the fluorescence signals of renal biopsies, the most important fluorophores 

contributing to the peaks at 520 nm, 560 nm, and 630 nm are supposed to be flavin adenine 

dinucleotide (FAD), collagen, and porphyrins, respectively. Several studies have reported the 

interstitial expression of collagen types I and III in renal cell carcinoma [36]. Differences in 

fluorescence signals between tumor and normal samples may come from the changing ratio of their 

composition, but can also be attributed to the appearance of at least one additional fluorophore [37]. 

As it follows from the assignment of spectral features, the methods of fluorescence and MIR 

spectroscopy are capable of delivering complementary chemical information, and are therefore 

suitable for a joint analysis. 

Preliminary PCA of the raw spectral data has shown a much better tumor/normal class 

separation in the case of combined dataset, as observed in the scores plots in Figure 4a,c,e.  

The following approach to the data preprocessing was used to rank the discrimination abilities 

of individual spectroscopic techniques and their combinations. Individual techniques were tested 

with different preprocessing methods prefacing PLS-DA modeling: no preprocessing or SNV for 

fluorescence data and no preprocessing, SNV, second derivative (2D), or 2D + SNV (2D followed by 

SNV) for MIR data. In the case of spectra concatenation, both data parts should be normalized in 

order to standardize their scales, and thus, to minimize the model bias. Therefore, in the case of 

combined data, the “no preprocessing” method was not considered at all. Both data parts in this case 
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were SNV-corrected or autoscaled (Section 2.3). The best method was chosen based on the accuracy 

(%Ac) statistics of calibration and validation. The results presented in Table 1 enable a comparison of 

the diagnostic efficiency of two separate spectroscopic techniques as well as their combination after 

the individually adjusted data preprocessing method chosen from the list of the most efficient 

algorithms. 

 

Figure 4. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-

DA) models (segmented cross-validation results): (a, c, e) score plots of PCA models and (b, d, f) 

frequency histograms of PLS-DA-predicted values for: (a, b) fluorescence spectra corrected by 

standard normal variate (SNV), (c, d) SNV-corrected second derivative MIR spectra, and (e, f) 

concatenated dataset. In (a, c, e): red and blue colors designate tumor and normal tissue samples, 

respectively; labels designate measurement positions on the sample; percent variances explained by 

the corresponding principal components are shown in brackets on the axis labels. In (b, d, f): blue, 

cyan, red, and magenta colors designate true negatives (TN), false negatives (FN), true positives (TP), 

and false positives (FP), respectively. 

Calibration, CV, and RSV statistics show similar numbers and the method ranking stays mainly 

the same. This similarity is an indicator of the absence of model overfitting, at least for the present 

dataset. Overfitting is a common analytical risk to be considered, especially when the data volume is 

limited. Although the present dataset seems adequate for the method comparison, the practical 

diagnostic models should be built on a much larger number of patients to cover all possible 

variabilities. The modeling statistics in that case can be less optimistic. It is also remarkable that both 

individual and combined discrimination models required only two LVs. The model simplicity that 

stays unchanged in spite of the growing number of variables and hence data complexity is another 

sign of the method robustness. The statistics in Table 1 show that CV with the segments formed by 

measurement positions was the most conservative and hence the most straightforward validation 

strategy. Every iteration of the segmented CV simultaneously excludes similar spectra of the same 

sample positions. RSV is another good option for relatively small datasets that combines the features 

of both independent validation and CV.  

Fluorescence data by itself show generally lower discrimination capabilities than MIR 

spectroscopy. The respective CV accuracies were 61% against 92% for the best preprocessing 
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techniques (bold font in Table 1). SNV correction of the fluorescence spectra results in some 

improvement of the respective model performance. In contrast, raw spectra produce the worst 

discrimination statistics of the MIR spectroscopic model. The best preprocessing for the individual 

MIR method was found to be 2D + SNV, which resulted in a noticeably better prediction than SNV 

or second derivative methods alone (Table 1). Misclassified measurements in the MIR-based model 

are predominantly presented by false negatives, i.e., non-recognized tumor (Figure 4d), which is an 

undesired trend.  

Table 1. Comparison of spectroscopic methods for kidney cancer diagnostics; two latent variables 

(LVs) were used in all models.  

Method Preprocessing TP FP TN FN %Ac %Sn %Sp 

Calibration 1 

Fluorescence 
none 37 20 21 14 63 73 51 

SNV 2 32 12 29 19 66 63 71 

MIR 

none 38 1 40 13 85 75 98 

SNV 42 2 39 9 88 82 95 

2D 3 45 4 37 6 89 88 90 

2D + SNV 49 0 41 2 98 96 100 

Fluorescence | MIR 

AS 4 | AS 39 13 28 12 73 76 68 

AS | 2D + AS 44 8 33 7 84 86 80 

SNV | SNV 48 0 41 3 97 94 100 

SNV | 2D + SNV 51 0 41 0 100 100 100 

Cross-validation 5 

Fluorescence 
none 32 22 19 19 55 63 46 

SNV 27 12 29 24 61 53 71 

MIR 

none 38 3 38 13 83 75 93 

SNV 42 4 37 9 86 82 90 

2D 45 5 36 6 88 88 88 

2D + SNV 45 1 40 6 92 88 98 

Fluorescence | MIR 

AS | AS 35 15 26 16 66 69 63 

AS | 2D + AS 37 9 32 14 75 73 78 

SNV | SNV 47 0 41 4 96 92 100 

SNV | 2D + SNV 49 0 41 2 98 96 100 

Random-subset validation 6 

Fluorescence 
none     61 70 50 

SNV     65 61 70 

MIR 

none     84 75 95 

SNV     88 83 94 

2D     89 87 91 

2D + SNV     95 92 99 

Fluorescence | MIR 

AS | AS     71 75 66 

AS | 2D + AS     81 83 80 

SNV | SNV     96 94 100 

SNV | 2D + SNV     99 98 100 

1 Prediction and training on the full dataset; 2 Standard normal variate; 3 Savitzky-Golay second 

derivative; 4 Autoscaling; 5 Segmented CV with 31 segments formed by the measurement positions;  
6 Subset (15%) of the full data at 1000 iterations. 

Concatenation of the fluorescence spectra with second derivative MIR spectra followed by SNV 

normalization of both data parts leads to a remarkable improvement. CV of the optimal PLS-DA 

model built on the combined spectral data (Table 1 and Figure 4f) resulted in only two 

misclassifications of 92 measurements, which corresponds to a 98% accuracy. Other preprocessing 

techniques and their combinations were also checked, but the model performance was significantly 

lower (Table 1).  

The role of an appropriate preprocessing for the whole success of analysis is high. Second 

derivative preprocessing was necessary to compensate for unavoidable baseline variations observed 
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in MIR spectra (Figure 3b). As the fluorescence spectra were acquired with different acquisition times, 

their SNV normalization was necessary to remove the absolute intensity effect and to emphasize the 

differences in the spectral shape. For the data weighting that accompanies their concatenation, SNV 

correction worked out to be a much better normalization algorithm than autoscaling.  

Increasing use of multi-spectral techniques is a distinct trend in modern qualitative and 

quantitative analysis [38]. However, the simple addition of any spectroscopic method does not 

generally result in synergy. For instance, a combination of MIR [39] or NIR [40] with Raman 

spectroscopy did not bring any accuracy gain of the target component determination. At the same 

time, the latter combination was profitable for another analyte [40]. An evident gain of merging two 

optical techniques observed in the present study allows for a reasonable suggestion about the 

difference of respective cancer biomarkers predominantly revealing themselves in MIR and 

fluorescence spectra, which also follows from the above given spectral interpretation. Also 

considering the size of effect, it can hardly be explained by simple mutual compensation of the 

measurement errors due to the combination of techniques. 

Due to its small penetration depth (0.5–2 μm) at the MIR wavelengths, ATR spectroscopy is a 

superficial measurement technique that mainly works at the cellular level. In contrast, fluorescence 

signals can be collected from a depth of up to a few millimeters, as corresponds to the higher 

penetration ability of the visible laser light. The depth can also be affected by the scatter, depending, 

in its turn, on tissue morphology. Working depth is therefore an additional factor making the 

information delivered by both methods complementary. 

Joint analysis of MIR and fluorescence spectra of the same objects is new; neither medical nor 

industrial applications of this combination are heard of. This lack of research is accounted for by 

experimental differences making compatible measurements of the same solid sample by both 

methods problematic. In the present study, the compatibility was possible due to the application of a 

PIR-based ATR probe, thus enabling spectroscopic MIR and fluorescence measurements at the same 

sample point. 

The experimental data discussed in this section can be accessed using the links provided in 

Appendix A. 

4. Conclusions and Outlook 

The observed synergic gain of combining fiber-based ATR MIR and fluorescence spectroscopy 

of kidney cancer provides a motivation for the further development and improvement of this joint 

method for in vitro diagnostics. For clinical usage, both techniques should be seamlessly integrated 

within the same analytical method and probe. The main requirement and, at the same time, the main 

challenge of the probe unification is to provide a simultaneous measurement of exactly the same 

point at the sample surface. 

Significant effort should be aimed at the accumulation of statistically representative data to 

provide the robustness of the multivariate discriminating model, i.e., its resistance to all possible 

variations of the sample tissue. The method extension to different organs and cancer types is another 

important direction of its development. 

A separate challenge to be addressed in our subsequent studies is the fair method comparison. 

The need for a formalized approach to the comparison of spectroscopic and modeling techniques 

follows from an extremely wide variability of the tissue samples on the one hand, and from the 

diversity of statistical criteria on the other. The sum of ranking differences (SRD) method [41,42] 

provides a necessary platform for an unbiased method discrimination and validation [43] based on a 

representative clinical data including multiple datasets with numerous patients and different 

measurements sites.  
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Appendix A. Source Data 

Fluorescence spectra: https://tptcloud.com/data/view/4904 

MIR spectra: https://tptcloud.com/data/view/4905 

Concatenated spectra after optimal preprocessing (Table 1): https://tptcloud.com/data/view/4902 
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